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We compute the largest relaxation times for the totally asymmetric exclusion
process (TASEP) with open boundary conditions with a DMRG method. This
allows us to reach much larger system sizes than in previous numerical studies.
We are then able to show that the phenomenological theory of the domain wall
indeed predicts correctly the largest relaxation time for large systems. Besides,
we can obtain results even when the domain wall approach breaks down, and
show that the KPZ dynamical exponent z=3/2 is recovered in the whole
maximal current phase.
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1. INTRODUCTION

Several many particle systems are characterized by a steady mass transport.
Examples for this kind of systems can be found in biological transport” or
vehicular traffic.” From a theoretical point of view these processes are of
particular interest, because they exhibit generic non-equilibrium behavior.
Due to the large number of important applications, many microscopic
models for particle transport have been suggested in recent years. >
Among these, the most important microscopic model for non-equilib-
rium particle transport is the so called asymmetric exclusion process
(ASEP).®9 In this model, particles jump on a one-dimensional lattice,
either to the right (with probability pdt) or to the left (with probability
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q dt), if the corresponding sites are empty. The model shows a number of
generic effects” that are characteristic for non-equilibrium particle trans-
port and maintain for the more specialized variants of the model. ®* At the
same time the ASEP is simple enough to obtain several exact results for the
system, which is of great importance, because the general theoretical
framework of non-equilibrium physics is less developed. Exact results exist,
e.g., for the stationary state of the system with periodic® and open
boundary conditions.®*'? The case of open boundary conditions is of
special interest because one observes boundary induced phase transitions.?
In this paper, we restrict ourselves to the totally asymmetric exclusion
process (TASEP), that is ¢ =0. This case includes the most important
phenomena but simplifies considerably the discussion of the model. Open
boundary conditions are implemented by two particle reservoirs that are
coupled to the chain. The capacities of the reservoirs determine, together
with the bulk hopping rates, the actual state of the system.

The complexity of the open system is also reflected in the mathemati-
cal structure of the stationary solution. While the steady state of the
periodic system is given by a simple product measure,® it is highly non-
trivial for the open system. Nevertheless, it can be calculated and it is pos-
sible to obtain several non-trivial quantities, e.g., current- or density fluc-
tuations in the stationary state,">'? or large deviation functions."®

The dynamic properties of the open system are, however, more puzzl-
ing. Exact analytical results for the largest relaxation time 7 and the corre-
sponding dynamical exponent z are so far only possible for the periodic
chain by applying the Bethe ansatz.“'> For the open chain estimates for 7
can be obtained from a phenomenological approach, that models directly
the dynamics of the boundary layer separating the high and low density
domains imposed by the particle reservoirs."® It has been shown, that this
approach gives asymptotically correct results in a certain parameter regi-
me.!” For finite systems, as well as for general in- and output rates,
relaxation times have to be calculated numerically.

This has been done by U. Bilstein and B. Wehefritz,'® and later by
M. Dudzinsky and G. M. Schiitz"” who calculated the relaxation times by
using exact diagonalization. This method is, however, restricted to very
short chains (less than twenty), that are not in the asymptotic limit. In this
work we used the density matrix renormalization group (DMRG) tech-
nique,® that enables us to calculate the relaxation times for much larger
system sizes, compared to Refs. 18 and 19. By treating large chains we
have obtained more conclusive results for the dynamical exponent z in
the maximal current phase and could also achieve convergence between the
exact numerical values of the relaxation times and the estimates of the
phenomenological approach.



Relaxation Times in the ASEP Model Using a DMRG Method 625

The paper is organized as follows. In the next section we discuss
briefly the relevant physical concepts and the applied numerical techniques.
In the third section we show the comparison of the domain wall predictions
for finite systems with our results. Section 4 is devoted to the special case of
the disorder line a+ f = 1. This section is followed by a discussion of the
dynamical behavior when approaching the phase boundaries as well as in
the maximum current phase.

2. ANALYTIC PREDICTIONS AND THE DMRG METHOD FOR NON-
EQUILIBRIUM SYSTEMS

2.1. The TASEP with Open Boundary Conditions

For self-containedness we will repeat the definition of the model. The
TASEP is defined on a one-dimensional lattice with L sites. The boundary
sites of the chain are coupled to two particle reservoirs, one reservoir on
the left that controls the particle input and a second on the right that
governs the output of particles.

We regard the process in continuous time (see ref. 21 for a comparison
of the different update procedures), which corresponds to a random
sequential update in computer simulations. If a link between sites i and
i+1 is selected, a particle located at i moves to site i+1 if site i+1 is
empty (for convenience we set the hopping rate to one). In case of choosing
the link (0, 1) one introduces a particle with probability « if the first site is
empty. Finally a particle may leave the system with probability g, if the
link (L, L+1) is chosen.

Each configuration ¢ can be written in terms of boolean lattice gas
variables g;, i.e., g; = 0(1) if the site is empty (occupied). If we introduce an
orthonormal basis |¢) = |g;,..., 6, » in the 2*-dimensional configuration space,
we can define the probability vector |P(2)) as |P(1)) =X ,; P({c},?) o). The
time evolution of |P(¢)) is determined by means of the master equation, that
can be written as a Schrodinger equation in imaginary time:® 2

0
7, 1P =—H |P(1)), ¢y

where # denotes the stochastic Hamiltonian. The matrix elements of #
are the rates w(g — ¢’) for a transition ¢ — ¢’. Explicitly s is given by
{a| # |o') =—w(ad' - g) for the off-diagonal elements (¢ #¢') and by
(ol H |o) =35 4y W(a — a’) for the diagonal elements.
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Fig. 1. Phase diagram of TASEP with random sequential update, depending on the input
rate a and output rate f. The insets show typical density profiles. Phase transitions are indi-
cated by the solid lines. Along the diagonal dashed line a+ f = 1, corresponding to the dis-
order line of the model, the density profile is flat. Finally, the transitions between the sub-
phases AI/AII (respectively BI/BII) are marked by dashed lines.

The exact stationary solution of the master equation can, for general
a, B, be written as a product of infinite dimensional matrices.” This solu-
tion allowed to calculate the a, f dependence of the stationary quantities,
e.g., the average flux. The results are summarized in the phase diagram of
the system shown in Fig. 1. Three phases can be distinguished by means of
a different functional behavior of the flow. In the low density phases Al
and All i.e., for a < 8, « < 1/2, the flow J = J(«) is given by J = a(1 —a)
and analogously in the high density phases BI and BII by J = g(1—f). If
both a > 1/2 and > 1/2 (phase C) the capacity of the particle reservoirs
exceeds the capacity of the chain. Then the flux is independent of a and S
and given by J = 1/4. This phase is called maximal current phase.

Both the high and low density phases are divided into two subphases.
In phase AI and BI, the capacities of both reservoirs are below the chain
capacity. In phase AII (BII), only the capacity of the exit (entrance)
exceeds the chain capacity. This has, e.g., consequences for the asymptotics
of the density profile,"® and, a question we address in this article, possibly
also for the dynamics of the chain. Another important line is given for
a+f=1. On this one-dimensional line the stationary solution is much
simplified, i.e., it is given as product measure.

Now we shall summarize known results for the relaxation times. For
the periodic system, exact results for the energy-gap, i.e., the inverse of the
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largest relaxation time t;, have been obtained by Bethe-ansatz tech-
niques."*'> The largest relaxation time scales for any density of the system
asymptotically as 7, ~ L?, where z=3/2.

As translational invariance is lost in the open system, the technique
does not apply. Besides, the dynamics is profoundly modified by the pres-
ence of the two particle reservoirs, which impose the coexistence of two
domains into the system. In case of the phases A7, BI, it is known that the
two domains imposed by the reservoirs have a simple factorized structure.
In this parameter regime the so-called domain wall (DW) theory can be
applied."® The DW theory uses a coarse grained description of the
dynamics of the process: Each particle reservoir that is coupled to the chain
imposes independently a domain of a given constant density p, and pg.
The two domains are separated by a localized domain wall, which performs
a biased random walk. The bias is due to the different capacity of the two
reservoirs and can be calculated simply by using the conservation of mass.
In a finite system the position of the domain wall is confined between two
reflecting walls. The description of the process allows to calculate the sta-
tionary as well as the fully time dependent probability distribution of the
domain wall positions." Then, it is in particular possible to estimate the
largest relaxation times of the system, that are given by

1, =[D*+D —2./D*D cos(zn/(L+1))]"' n=12... ()
with
L_BA=p L _a-a)
i vy S ey @

These results are valid for a, § < 0.5. The remaining parameter space
has to be explored numerically.

2.2. The DMRG Method for Stochastic Models

In the previous section we have shown that the master equation can be
rewritten as a Schrodinger equation in imaginary time. Now, in order to
calculate the longest relaxation time of the system, one has to calculate the
two lowest eigenvalues of Eq. (1) (the first eigenvalue is trivially zero, with
an eigenvector corresponding to the stationary state). The eigenvalue cal-
culations have to be done with very efficient diagonalization methods, in
order to reach sufficiently large system sizes. This is possible by applying
the DMRG method.®
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This method was first developed to study the properties of strongly
correlated electrons.® It has recently been generalized in order to treat
stochastic many particle systems. 2%

The idea of the DMRG is the following. One starts with a small
system (here 12 sites) that can be diagonalized with standard numerical
methods. Then one performs a large number of renormalization cycles in
order to increase the system size. At each renormalization cycle, first the
system is enlarged by adding 2 sites in the bulk of the system, i.e., in a place
where it is less likely that the eigenmodes will be perturbed. The largest
eigenvalues of the corresponding enlarged Hamiltonian are computed.
These eigenvectors are used in order to construct the density matrix of the
system, which will be used in the next stage. Second, in order to avoid an
exponential growth of the hamiltonian, a projection onto the “most
important” modes has to be done. It has been shown that the best choice is
to keep the m leading eigenvectors of the density matrix.®® The parameter
m has to be chosen small enough in order to allow a fast calculation of the
eigenvectors, but large enough in order to obtain a high numerical preci-
sion. The error due to each truncation is well controlled.®

Although no fundamental differences between the DMRG method for
stochastic and quantum mechanical systems exist, one has to make a
certain effort in order to overcome the numerical difficulties. This has been
done following the suggestions of refs. 23 and 24. We now discuss some
details of our implementation.

The main difference between the quantum mechanical and stochastic
problem is that the stochastic hamiltonian is not hermitian. Therefore, the
calculation of the eigenvectors of the hamiltonian required at each renor-
malization step cannot be done by standard diagonalization techniques (as
the basic Lanczos or Davidsson algorithms) but one has to apply, e.g., the
Arnoldi method or Lanczos for non-symmetric matrices. These methods
are quite efficient but, compared to their analogues for symmetric matrices,
less stable.® We use the Arnoldi method, that turned out to be numeri-
cally more stable than the Lanczos method for non-symmetric matrices.
Nevertheless the method is numerically well controlled, because the
accuracy of the calculated eigenvector can be obtained via the residual
norm, i.e., we check that it is indeed an eigenvector. Actually, we have used
the Arnoldi method in an iterative way, where the initial guess is the result
of the previous Arnoldi run, until the desired precision is reached.

Apart from being non-hermitian, there is another difference between
stochastic and quantum mechanical problems. It is well known that the
lowest eigenvalue of stochastic hamiltonians is always zero, corresponding
to the existence of a stationary state, and that the corresponding left
eigenvector |0,) has all its coordinates equal to 1. Therefore the first task
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will be to calculate the right eigenvector |0,>. As we are interested in the
asymptotic dynamics of the system, we have to calculate the energy gap
G(L) as well, i.e., the next smallest eigenvalue and the corresponding left
and right eigenvectors |1,)> and |1, ). Then the longest relaxation time 7 =1,
will be given by

T=G(L)™. @)

After the calculation of these eigenmodes, one has to eliminate the
least important degrees of freedom of the system, in order to keep the
system at a manageable size. It has been shown that the relevant degrees of
freedom are the eigenmodes associated to the largest eigenvalues of the
density matrix p. The latter is defined depending on how many eigenmodes
we need to calculate. Here, for the calculation of the gap, we take

P =3 Tr{10,50,| +10,><0, |+ [1,> <1 +11,><1, 1} (©)

Note that it is always possible to construct a symmetric form for the
density matrix. Therefore, standard algorithms can be applied in order to
calculate all eigenvalues and eigenvectors of p as for quantum systems.

Another trick that allowed to gain accuracy on the gap calculation is
to compute first the right eigenmode |0, ) for the fundamental state (the left
is known), and then to define a new hamiltonian

H'(4) = H+40,)<0,]. (6)

This hamiltonian H' has, apart from the groundstate, the same spectrum as
the original hamiltonian H. The gap is now given by the fundamental state
of H'.@®%

Note that one requirement of the DMRG method is that the requested
eigenvalue is well separated from the next one. This may not be true when
the system size increases, and then the calculation becomes instable. The
system size limitations come from these instabilities rather than from
runtime or memory requirements. So, the DMRG method either gives very
accurate results for the eigenvalues, or does not converge at all.

Finally we want to mention another particularity of the system. As
rules are different at each end of the system (input or output), we cannot
use the left/right symmetry of the system as people do for closed systems,
and the left and right parts of the system have to be computed alterna-
tively.
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3. TEST OF THE DOMAIN WALL THEORY AT SMALL SYSTEM
SIZES

The comparison between DW predictions and the exact analytical for
the stationary state shows that they agree in the limit of large system sizes
and «, B < 1/2.%7 For finite systems, however, the coarse grained picture
slightly deviates from the exact results.

In case of the dynamical properties, so far no exact analytical results
exist. Therefore the DW predictions have to be checked with numerical
methods.

In a previous work, we have compared time-dependent density profiles
in a non-stationary regime, and found good agreement with the domain
wall predictions.®® Here, we calculate explicitly the relaxation times of the
process, in order to compare with the predictions of the DW method. The
same has been done already by using the non-symmetric Arnoldi
method, 31 but the system sizes that one can treat by the non-symmetric
Arnoldi method are too small (L <16 in ref. 19) in order to obtain con-
vergence with the DW predictions. Our aim is to improve this convergence
thanks to the ability of DMRG to treat larger systems.
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Fig. 2. Gap as a function of the system size, for « = 0.2 and f = 0.1. The solid line indicates
the domain wall prediction, while symbols represent the DMRG results. The circle was
obtained in ref. 19 for L=16. Error bars for the DMRG results are not given, as they are
much smaller than the size of the symbols. The inset shows in a log-log plot the difference
between the two curves.
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First we consider cases with both « and 8 < 1/2, where the domain
wall theory is expected to work well, though this was not fully verified by
the exact numerical calculation, due to size limitations. Fig. 2 shows the
comparison of the inverse relaxation time with the domain wall predictions
in the high density phase (x=0.2, f#=0.1). For comparison we also
included the result for L = 16 obtained in ref. 19, which perfectly coincides
with the DMRG calculations. Obviously the theoretical predictions and the
numerical results are in good agreement, if the length of the chain reaches
thirty sites.

For « = 0.4 and = 0.2, the DW predictions for small system sizes are
slightly less accurate, as shown in Fig. 3. This could be expected, as the
density difference between the two domains 4p =1—f—a is smaller and
therefore the width of the shock larger than in the previous case. If,
however, the shock touches the boundaries the approximation of micro-
scopic states by @-functions is less appropriate.

For a or f§ larger than 0.5, the coexistence is not between a high- and
low-density domain, but, e.g., for a > 1/2, between a maximal current and
high-density domain. This case is much more complicated than the coexis-
tence of domains in the phase A or BI. It is known from the exact results,
that long ranged correlations exist in the maximal current regime, which
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Fig. 3. Gap as a function of the system size, for a = 0.4 and f = 0.2. The solid line indicates
the domain wall prediction, while symbols represent the DMRG results. The insets shows in a
log-log plot the difference between the two curves.
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implies that the maximal current domain has no simple structure, and
cannot be easily described.

A naive attempt to describe the maximal current domain, which uses
the fact that the flux is a constant J = 1/4 and would lead to exponentially
decaying density profiles, is to build the density profile iteratively from the
boundary with a mean field formula like j = p;(1—p,,,). But this yields a
wrong density profile. It was also suggested’® to use the exact results of
the density profile. However, this approach has intrinsic shortcomings.
First the DW is no longer self-contained and, second, it is no longer pos-
sible to specify the relaxation times in a closed form, because the hopping
rates of the random walk are now site-dependent. But above all, the
description of the system states as the juxtaposition of two phases with an
independent boundary layer between them breaks down. Indeed, the wall
dynamics is coupled to the whole structure of the maximal current phase,
due to the long ranged correlations.
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Fig. 4. Gap as a function of the system size, for a =0.51, 0.55, and 0.65, and  =0.3. The
solid lines indicate the domain wall prediction, while the symbols represent the DMRG
results. The domain wall prediction for a = 0.65 is the upper curve. The dotted line gives the
domain wall prediction calculated for a = 1/2. The DMRG results y,(L) were interpolated
using an algebraic fit function f(L) = aL®+c. The inset shows log[ f(L)—c] as a function of
log L (symbols) in comparison with log[ y,(L)—c] (solid lines).
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So we explore this parameter regime guided by two questions: (i) Do
we obtain a finite relaxation time in the phases AI1/BII in the limit of
large system sizes? (ii)) And, if it is the case, is it possible to model the
maximum current phase as a flat domain with an effective density p,;?

First we checked the domain wall predictions close to the transition
line at o =0.5, i.e., for « =0.51 and 0.55 (see Fig. 4). In this parameter
regime one already has long ranged correlations in the maximal current
domain, but at the same time the magnitude of the deviations from a flat
domain is rather small. Our results indicate, that within this parameter
regime the DW formulas (2-3) still lead to satisfying results for quite large
system sizes. On the other hand, the DW prediction with o = 1/2, which
was conjectured at first to be the proper one for any a > 1/2,19 clearly
underestimates the gap for any system size.

For larger values of « (e.g., « =0.65 in figure), the algebraic correc-
tions of the density profile become non-negligible. Equations (2-3) do not
give anymore a good estimate.

Next, we checked whether our results are compatible with a finite
relaxation time in the limit L — co. Therefore we interpolated our results
for G(L) using the functional form f(L)=aL’+c. We find a very good
agreement between the fits and our numerical data, with a finite value of ¢
(see the inset of Fig. 4), which indicates that the relaxation times remain

1.2

0.2 r J

0'0 1 1 1 1
0.00 0.02 0.04 0.06 0.08 0.10

1/L

Fig. 5. Size dependent dynamical exponents for different values of a (f =0.3). The results
are compatible with z(oc0) = 0.
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finite. Our estimates for the relaxation times are 7(o0)=116.(6) for
o= 0.51, 7(00) = 101.(7) for a = 0.55, and 7(c0) = 96.(1) for « = 0.65.

A finite relaxation time for L — oo implies at the same time, that the
dynamical exponent vanishes. This can be checked systematically by cal-
culating the size dependent dynamical exponent given as:

_In[G(L+2)]-In[G(L)]

D)= In(L+2)—In(L)

(M

Figure 5 shows that our results are compatible with z = 0 for all values
of a we took into account. So these results for a > 0.5 further support that
the relaxation times are finite within these subphases.

Now, one can simply take the values 7(c0) in order to calculate an
effective density of the maximal current domain. This procedure leads to
DW predictions for small systems, which do not agree very well with our
numerical findings. We thus believe that the non-trivial structure of the
maximal current domain must be considered in modeling the domain wall
motion.

4. DISORDER LINE

For general «, § it has been shown that the stationary weights are
given as products of infinite dimensional matrices. Nevertheless a one-
dimensional line in the parameter space exist, i.e., a+ f§ = 1, where the sta-
tionary weights are simple products as for the periodic systems. These
product states are in analogy with disordered states of quantum spin
models. At the disordered line the system is homogeneous, i.e., one can not
identify two different domains. This implies that the relaxation at this par-
ticular line is not governed by the motion of the domain wall.

Then it is an open question to know whether dynamical properties are
changed on this line and how the dynamical properties compare to the
periodic system. For the periodic system, Bethe ansatz predicts the dynam-
ical exponent z = 3/2.0%1 Besides, the first non-zero eigenvalue has an
imaginary part except for the density 1/2. The divergent relaxation times of
the periodic system are, however, related to its translational invariance.®”

By contrast, for the open system it is expected that the relaxation times
are finite if o # 0.5, because the density fluctuations spread with a nonzero
drift velocity.”

First, we have applied the DMRG method to the special point
o= f =0.5, where the drift velocity of an excess density vanishes.

Figure 6 shows that our numerical results for z(L), obtained up to
L = 244, agree with the exponent z = 3/2 predicted for the periodic system.
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Fig. 6. Dynamical exponent z as a function of the system size, for a = f#=0.5.
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Fig. 7. Dynamical exponent z as a function of the system size, along the disorder line. The
curves from bottom to top correspond to a = 0.1, 0.2, 0.3, 0.35, 0.4, and 0.45. Error bars are
of the same order as the line thickness.
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We have also explored the remaining part of the disorder line. We
present our simulation results in Fig. 7. They seem to exclude the case
z=3/2, and indicate that the relaxation time would be finite in the large L
limit (z(c0) = 0).

Although these results are consistent with the expected relaxation
behavior, we cannot exclude that a branch corresponding to complex
eigenvalues could cross our solution when L becomes large. The DMRG
method does not allow to distinguish whether the numerical instabilities are
due to the intersection or the convergence of two eigenvalue branches.

Nevertheless, we state that our numerical results are in accordance
with a finite relaxation time and, therefore, consistent with the physical
picture which was presented in ref. 7. Further support for this scenario
comes from its position in the phase diagram. The disordered line touches a
phase boundary only in a single point, i.e., for « = =1/2. All other
points of the disordered line are located inside a phase where the relaxation
times of the system are finite. Therefore, it would be rather counter-intui-
tive to observe a diverging relaxation time for these parameters.

5. PHASE TRANSITIONS AND THE MAXIVMIAL CURRENT PHASE

If the capacity of both particle reservoirs exceeds the capacity of the
chain, the maximal current phase is realized. In the maximal current phase

1.5 T T T T 1.5 T T T T
o=0.50 o= 0.50
=049 - a=060-----
Gz0a6 il
B =046 0=0.70 - _
1451 1.48 a=070
\ =090 -
140 - 14601 -
-y i =5 :
1 ‘ 1
135} - 1.44 .
1.3 - 1.42 -
1.25 1 1 1 1 14 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1

n 1L

Fig. 8. Dynamical exponent z as a function of the system size, for f =0.8. The left figure
presents results obtained in the AII phase, where the maximal current phase coexist with a
high density phase. For a« = 0.5, we are exactly on the 2nd order transition line. The right
figure shows results within the maximal current phase.
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both localization lengths are infinite. This divergence of length scales leads,
e.g., to an algebraic slope of the density profiles.

In this phase, previous numerical calculations by Bilstein et al."® for
L <20 extrapolated to large systems seemed to indicate an exponent 3/2 in
the whole maximal current phase.

We have computed the dynamical exponent in various points in the
maximal current phase. Results are presented in Fig. 8, for a constant
£ =0.8, a being varied through the second order transition (x =0.5) and
inside the maximal current phase (we have checked that of course, results
are the same when a and f are interchanged). We clearly see a transition
when the maximal current phase is entered. On the transition line a = 0.5,
we recover z = 3/2 in the large system size limit. Besides, from our numer-
ical results, the infinite size dynamical exponent seems to be equal to 3/2 in
the whole maximal current phase, confirming the extrapolation in ref. 18.

6. CONCLUSION

The use of a DMRG approach to compute the largest relaxation time
in the TASEP model has allowed to give new strong evidence of the vali-
dity of the domain wall picture when reservoirs control the flow.

For a or B larger than 1/2, the capacity of one of the reservoirs
becomes larger than the chain capacity, and one of the coexisting domains
is then a maximal current phase. Our numerical results indicate that the
relaxation times 7(o0) are finite for L — oo as in the phases AI/BI. As
the bulk density in a maximal current phase is 1/2 independently of the
boundaries, one could have expected that the relaxation time 7(c0) would
be independent of the most efficient reservoir (i.e., independent of f in AIl
and o« in BII). This is not the case, as boundary layers in the maximal
current domain decay only algebraically, and lead to a site-dependence of
the density. Besides, strong correlations that cannot be easily characterized
exist in this phase. This means that the maximal current phase cannot be
modeled as a flat domain with density 1/2.

But even if we model the maximal current domain as a domain of a
constant effective density p,;,, which leads to the estimated value of 7(0),
we observe large deviations between DW predictions and relaxation times
for finite system sizes—again due to the non trivial structure of the maximal
current domain. The DW predictions would probably be much improved if
one considers site dependent hopping rates, but they are difficult to obtain
since the structure of an isolated maximal current domain is not known.

Anyhow, as in phase Al and BI, the domain wall theory still offers a
simple explanation for a finite relaxation time of the system in phases AII
and BII.
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On the disorder line, this picture cannot be applied, as no domain wall
can be identified anymore, and a qualitatively different dynamical behavior
cannot be excluded. However, though a wall cannot be defined anymore,
we could still trace the dynamics of the density fluctuations by introducing
a second class particle. The second class particle performs a biased motion
to one of the boundaries for any density different from 1/2. Therefore one
expects that the density fluctuations are also driven out of the system with
a finite velocity, which should lead to finite relaxation times, if o # 1/2.

Contrary, in the periodic system, which has the same simple structure
of stationary state, the relaxation times diverge as L ~ L¥? for arbitrary
densities. The divergent relaxation times have been related to the transla-
tional invariance of the periodic system®” and are, therefore, not expected
in case of the open system, except if a = f=1/2.

Indeed, our numerical results support this scenario. Besides, we have
shown that the dynamical exponent z = 3/2 is also recovered in the whole
maximal current phase, for which no theoretical prediction exists.

So we could summarize the expected behavior of the relaxation time as
follows:

(i) In the whole phases AI, AII, BI, and BII, except on the transition
line « = B, our results are consistent with a converging relaxation time. Its
limit value as L — oo is known from the DW theory in Al and BI.

(ii)) On the line a = f, and in the whole maximal current phase, the
relaxation time diverges when L — co. The associated dynamical exponent z
is 2 on the line « = f and 3/2 in the maximal current phase and at the
pointa=f=1/2.

Further improvement could be obtained from the use of Finite Size
algorithm for DMRG (FSM), as described by Carlon et al.,*® in order to
gain some precision on our calculations—and thus to reach larger system
sizes—in the whole phase diagram, and especially near critical lines.

It would also be interesting to apply the DMRG method to other
models, which have a non-trivial but not necessarily site dependent domain
structure, in order to check whether the DW theory still describes correctly
the relaxation behavior of the system.
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